Earth's Pacific Ocean #### **REVISED EDITION** Saturn V rocket blasts off the launchpad #### DK DELHI Senior Art Editor Vikas Chauhan Art Editor Aparajita Sen Editor Ankita Gupta Senior Managing Editor Rohan Sinha Managing Art Editor Govind Mittal DTP Designers Harish Aggarwal, Pawan Kumar, Rajdeep Singh Jackets Designer Juhi Sheth Senior Jackets Coordinator Priyanka Sharma-Saddi #### **DK LONDON** Senior Editor Carron Brown Art Editor Chrissy Checketts Managing Editor Francesca Baines Managing Art Editor Philip Letsu Senior Production Editor Andy Hilliard Senior Production Controller Poppy David Senior Jackets Designer Surabhi Wadhwa-Gandhi Jacket Design Development Manager Sophia MTT Publisher Andrew Macintyre Associate Publishing Director Liz Wheeler Art Director Karen Self Publishing Director Jonathan Metcalf Consultant Giles Sparrow #### FIRST EDITION Consultant Dr Jacqueline Mitton #### **DK LONDON** **Senior Editors** Camilla Hallinan, Jenny Sich **Senior Designer** Spencer Holbrook #### **DK DELHI** Senior Art Editor Sudakshina Basu Editor Priyanka Kharbanda Picture Researcher Sumedha Chopra Picture Research Assistant Esha Banerjee Managing Jackets Editor Saloni Singh Picture Research Manager Taiyaba Khatoon Managing Editor Kingshuk Ghoshal Managing Art Editor Govind Mittal This edition published in 2023 First published in Great Britain in 2017 by Dorling Kindersley Limited DK, One Embassy Gardens, 8 Viaduct Gardens, London, SW11 7BW The authorised representative in the EEA is Dorling Kindersley Verlag GmbH. Arnulfstr. 124, 80636 Munich, Germany Copyright © 2017, 2023 Dorling Kindersley Limited A Penguin Random House Company 10 9 8 7 6 5 4 3 2 1 001-335449-Apr/2023 No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the copyright owner. A CIP catalogue record for this book is available from the British Library. ISBN: 978-0-2416-1719-9 Printed and bound in China ### For the curious www.dk.com This book was made with Forest Stewardship Council™ certified paper - one small step in DK's commitment to a sustainable futur. For more information go to Earth-orbiting satellite Close-up, falsecolour view of Saturn's north pole Jupiter outweighs all seven other planets combined ### Contents 6 Planet Earth and its neighbours 8 What is a planet? 10 Changing worlds > 12 Skywatching 14 Space age exploration > 16 The Sun 18 Mercury > 20 Venus 22 Earth 24 Water world 26 Living planet > 28 The Moon 30 Exploring the Moon > 32 Mars 34 The Red Planet 36 Roving on Mars > 38 Asteroids 40 Jupiter 42 Jupiter's moons > 44 Saturn 46 Saturn's rings 48 Saturn's moons 50 Visiting the giants The outer Solar System 54 Uranus 56 Neptune 58 The outer dwarfs > 60 Comets 62 Exoplanets 64 Did you know? Solar System facts 68 Timeline 70 Glossary > 72 Index # Space age exploration Robotic spacecraft have been exploring the Solar System since 1959. Far from home, in conditions no human could endure, they have investigated the planets, a host of moons, two dwarf planets, asteroids, comets, and the Sun. Mostly about the size of a family car, they carry scientific instruments that test conditions on other worlds, and transmit their findings home, making far distant worlds familiar. #### Early exploration The first missions to another world were the Luna craft sent by the Soviet Union to the Moon. Luna 1 was the first to leave Earth's gravity, in 1959. Luna 9 was the first to soft land on the Moon, in 1966. Lunokhod 1 (left) was the first rover to explore the Moon. It landed in 1970 and roved across 10.5 km (6.5 miles) of its surface. > Mariner 9 started returning images of Mars in January 1972. #### Mariner missions Between 1962 and 1973, US Mariner missions made the first flybys of Venus, Mars, and Mercury. Mariner 9 (right) was the first craft to orbit another planet, arriving at Mars in 1971. The final mission, Mariner 10, was the first to visit two planets, Venus and Mercury. ### Robotic **explorations** of the planet... has truly revolutionized our knowledge of the solar system. #### Landing craft Spacecraft use parachutes and small rockets to control their descent and make a soft (controlled) landing. The first soft landing on a planet was made by Venera 7 on Venus in 1970, but it survived for just under an hour in the corrosive atmosphere. Mars is more hospitable - four craft have successfully landed and worked there for longer periods. #### **Bristling with** equipment Each spacecraft carries a dozen or so scientific instruments including several cameras, as seen here on the Curiosity rover on Mars. In this selfie taken by another camera, the large round eye is ChemCam, which includes a laser and telescopic camera. Below are two rectangularshaped cameras, and at either side of them, a pair of navigation cameras. #### PERSEVERANCE ROVER NASA's Perseverance rover touched down on Mars in 2021, on a mission to search for past life and habitable environments. The six-wheeled rover is equipped with an array of cameras, drills to collect rock samples, and instruments to analyse the minerals it finds. #### In-depth orbits Spacecraft have orbited six of the Solar System planets, from Mercury out to Saturn. By circling these worlds, they can make systematic studies of them. Whole planets can be mapped - and changes recorded - on a daily, monthly, or yearly basis. Juno (right) arrived at Jupiter in 2016 and moved into a polar orbit to start its scientific mission. Three solar panels around Juno's hexagonal body provide electrical power. ## Water world Earth's water makes our planet unique. Oceans and seas of liquid salty water cover about 70 per cent of Earth's surface. Fresh water in lakes and rivers, as well as frozen in glaciers, ice sheets, and icebergs brings the total to more than 80 per cent. The movement of water plays a huge role and streams. Clouds carry water inland. Vater evaporates Water falls and condenses to back to land form clouds. as rain, hail. and snow. Water seeps into the ground and flows to the sea. Water cycle Earth's water moves in a global cycle. The Sun's heat warms ocean water, which evaporates into the air. The water vapour rises and condenses into clouds. These release the water as rain and snow. Rain and melted snow and ice flow downhill to the sea, where the cycle starts again. Plants release water into the air by transpiration. **Jacques Piccard** #### **Amazon River** EYEWITNESS Rivers hold less than one per cent of Earth's water, but have a big effect on its landscape, carrying about 20 billion tonnes of sediment to the oceans annually. The Amazon (left) delivers a fifth of all river water reaching the sea. #### Daily tides The Moon's gravity pulls on the oceans. The pull is stronger nearer to the Moon, so a bulge of water forms on the side nearest to the Moon, and on the opposite side. As Earth turns, the bulges create daily changes in the sea More than three-quarters of Earth's fresh water is ice - in glaciers, ice sheets and shelves (above), icebergs, mountain-top coverings, and soil. Most of it is in the ice sheet covering Antarctica - if it melted, sea levels would rise by about 60 m (197 ft). The ocean floor is mostly flat plains, but it also has mountains and trenches. The Mariana Trench plunges 11 km (6.8 miles) below the Pacific Ocean's surface. The Mid-Atlantic Ridge is Earth's longest mountain range. Deep-sea volcanoes that break through the water's Jason-3 orbits 1,336 m (830 miles) above Earth, passing over the same point every 10 days. A radar altimeter measures wave height and wind speed. #### Water watch Satellites orbiting Earth monitor its land, oceans, and ice. Jason-3 (above) measures the height of the ocean surface as part of a wider study of changes in sea levels and the effects of climate change. The Aqua satellite studies the water cycle, and CryoSat measures changes in the thickness of the ice sheets. The Moon's water more than Earth. gravity attracts # Saturn's rings The most impressive rings of any planet encircle Saturn. They are made of millions of orbiting pieces prevented by Saturn's gravity from combining to form a single moon. The rings extend to many times Saturn's width but average only about 10 m (33 ft) deep, and small moons sweep the gaps in between. ## Giovanni Cassini Italian-born Cassini, the first director of the Paris Observatory, France, was one of the first to observe Saturn. In 1675, he October #### Changing view Our view of the rings changes as Saturn orbits the Sun. The planet tilts by 27 degrees on its spin axis, and each hemisphere points towards the Sun once per orbit. In these five views, more and more of the southern hemisphere faces the Sun. The rings will lie edge on in 2025, and be wide open once again in 2032. #### Ring peaks The gravity of moons within the ring system causes kinks and waves in individual rings, or forces pieces into peaks. Cassini imaged these peaks rising up to 2.5 km (1.6 miles) above the edge of the B ring. Tall peaks cast long shadows on the B ring. #### Shepherd moon Daphnis (right) is just 8 km (5 miles) wide, and orbits within the Keeler Gap. It shepherds material into the ring and maintains the gap, causing ripples on both edges. #### Rings within rings The rings most readily seen from Earth are named A, B, and C. Each consists of individual rings of material. At either side of these three are more recently discovered rings that are almost transparent. The D ring is closest to Saturn, while E, F, and G lie beyond the A ring. There are a small number of gaps between the rings, such as the Cassini Division. They look empty from a distance but are full of material. Bring Icy particles reflect sunlight well, making the rings bright and easy to see. spotted the gap dividing the A and B rings that now bears his name. He also discovered four Tethys, and Dione. A ring Division moons: lapetus, Rhea, #### Giant dust ring A huge new ring found in 2009 is tilted from Saturn's main ring system. Made of dust, it starts 6 million km (3.7 million miles) from Saturn and extends twice as far again. It is also very thick, about 20 times Saturn's width from top to bottom. Invisible to the eye, the giant ring is seen here in infrared. #### Ring pieces The pieces that make up the rings are dusty water ice, and range in size from tiny grains to truck-sized boulders. Each follows its own circular orbit in a plane extending out from Saturn's equator. Their origin is uncertain. The pieces could be debris from a moon torn apart by Saturn's gravity, or from a moon destroyed in a collision with another body.