Helping your children choose books they will love

Lovereading4kids.co.uk is a book website created for parents and children to make choosing books easy and fun

opening extract from

Oxford Study Mathematics Dictionary

writtenby Frank Tapson

published by

Oxford University Press

All Text is Copyright © of the Author and/or Illustrator

please print off and read at your leisure.

mutually exclusive events are sets of **events** or **outcomes** for which the happening of one of them means that none of the others can happen. *Example: When rolling a die the outcomes are mutually exclusive, since when one number comes to the top it must mean that none of the others can.*

independent events Two or more **events** or **outcomes** are independent if the happening of one of them has no effect on the other. *Example: When two dice are rolled there are two independent outcomes, since the number showing on one does not influence the number on the other.*

- **dependent events** Two **events** or **outcomes** are dependent if a statement or probability for one of them affects a statement or probability for the other. *Example: One box holds 4 red and 6 black marbles; another holds 1 red and 9 black marbles. The probability of choosing a red marble from one box must depend on which box is chosen.*
- **combined events** describe the putting together of two or more separate **events** or **outcomes** to be considered as one single event or outcome. *This is usually done in order to find the probability of a final single outcome. The separate outcomes might be independent of, or dependent upon, each other. Examples: Rolling 2 dice (or 1 die twice) and adding the separate scores is combining 2 independent outcomes. Taking 2 counters from a bag of mixed colours wITHOUT replacing the first is combining 2 dependent outcomes.*

compound events = combined events

conditional probability is the **probability** of an **outcome** happening when it is **dependent** upon, or following, some other outcome.

Example: A bag contains 8 red and 2 black counters. The probability of drawing 2 red counters, if the first drawn is not replaced, is given by the probability of the first counter being red times the probability of the second being red, which is $\frac{8}{10} \times \frac{7}{9} = \frac{28}{45}$ \checkmark H = HHH = 3H

tree diagrams are drawn to find and display all possible results when several outcomes are being combined. *Example: When 3 coins are tossed all possible results can be found and displayed by using a tree diagram like that on the right (H=Head, T=Tail).* **odds** are another type of **probability** and the odds against a successful **outcome**

happening are given by: number (of *other* outcomes in the activity) TO number (of ways outcome can happen)

number (of other outcomes in the activity) TO number (of ways outcome can nappen) Example: The odds against getting a '3' with a single die are 5 to 1 since there are 5 other numbers and only one '3', so there are 5 ways of losing against

only 1 way of winning. The probability of getting a 3 is $\frac{1}{6}$ or $\frac{1}{5+1}$

Odds of *a* to *b* change to a probability of $\frac{b}{(a+b)}$

A probability of $\frac{a}{b}$ changes to odds of (b-a) to a

evens When the odds are 1 to 1 they are even. The probability for evens is $\frac{1}{2}$

95

pyramids and prisms

pyramid A pyramid is a **polyhedron** having any polygon as one face with all the other faces being triangles meeting at a common vertex. *The pyramid is named after the polygon forming the face from which the triangles start.*

base The base of a pyramid is the polygonal face which names the pyramid.

apex The apex of a pyramid is the vertex at which the triangular faces meet.

perpendicular height The perpendicular height of a **pyramid** is the distance of its **apex** from the plane of its **base**.

Volume of pyramid = Area of base \times Perpendicular height \div 3

altitude = perpendicular height

vertex In the case of a pyramid, vertex is often used to mean the apex.

- **right pyramid** A right pyramid is one having all its triangular faces equal in size. The base is a regular polygon, the apex is perpendicularly above the centre of the base, and all the triangular faces make the same angle with the base.
- **right square-based pyramid** A right square-based pyramid is a **right pyramid** having a square base. It is what is usually meant when only the word 'pyramid' is used and is the type seen in Egypt as a tomb of the Pharaohs.

oblique pyramid An oblique pyramid is a NON-right pyramid.

- **slant height** The slant height of a **pyramid** is the length of a perpendicular from the mid-point of a base-edge to the apex. *The slant heights of a right pyramid are all the same length.*
- **slant edge** The slant edges of a **pyramid** are all those edges joined to the **apex**. *The slant edges of a right pyramid are all the same length.*
- **frustum of a pyramid** A frustum of a pyramid is the part of a **pyramid** cut off between the **base** and a plane which is parallel to the base.

Volume of frustum = $(A + B + \sqrt{AB}) \times h \div 3$ where faces of frustum h = distance between faces

- **cross-section** A cross-section of any 3-D shape is the 2-D figure shown when that shape is cut across, in some specified place and direction, by a plane.
- **prism** A prism is a **polyhedron** having 2 faces identical and parallel to each other (usually referred to as the 'ends' or 'bases'), and any plane cut made parallel to the ends produces a cross-section the same shape and size as the ends. All faces, other than the ends, are rectangles or parallelograms. Prisms are named after the shape of the cross-section (if it has a name) as in 'triangular prism' or 'hexagonal prism'. If the other faces are rectangles, it is also referred to as a **right prism**.

The volume of a *prism* can be found by multiplying the area of one of the end faces by the perpendicular distance between the two ends.

antiprism An antiprism is a **polyhedron** that has 2 faces identical and parallel to each other. All the other faces are identical triangles, with each vertex of every triangle touching a vertex of one of the end faces, so that 4 edges meet at every vertex. *Unlike with a prism, its cross-section varies.*

pyramids and prisms

some prisms and their cross-sections

97

square antiprism

quadrilaterals

quadrilateral A quadrilateral is a **polygon** which has 4 edges. *Its 4 interior vertex angles (=corners) add up to 360 degrees.*

trapezium A trapezium is a quadrilateral with only one pair of parallel edges.

- **trapezoid** \equiv **trapezium** in N. American usage, but in UK usage it is a quadrilateral in which no two opposite edges are parallel.
- **isosceles trapezium** An isosceles trapezium is a **trapezium** in which the two opposite edges, which are not parallel, are the same length. *It has one line of symmetry and both diagonals are the same length.*
- **parallelogram** A parallelogram is a **quadrilateral** which has two pairs of parallel edges. *It has rotational symmetry of order 2, and its diagonals bisect each other. Usually one pair of edges is longer than the other pair, no interior vertex angle (=corner) is a right angle and it has no lines of symmetry.*
- **rhombus** A rhombus is a **quadrilateral** whose edges are all the same length. *Its* diagonals bisect each other at right angles and both are also lines of symmetry. Usually no interior vertex angle (=corner) is a right angle and then it is sometimes referred to as a **diamond**, **lozenge**, or **rhomb**.
- **rhomboid** A rhomboid is a **parallelogram** having adjacent edges of different lengths. *The word is little used because of possible confusion.*

The area of a trapezium, parallelogram or rhombus can be found by adding together the lengths of one pair of parallel edges, dividing by 2, and multiplying this by the perpendicular distance between them.

- **rectangle** A rectangle is a **quadrilateral** in which every interior vertex angle (= *corner*) is a right angle.
- **oblong** An oblong is a **rectangle** in which one pair of edges is longer than the other pair. *It has two lines of symmetry and rotational symmetry of order 2. Both diagonals are the same length and bisect each other.*
- **square** A square is a **rectangle** whose edges are all the same length. *It has four lines of symmetry and rotational symmetry of order 4. Both diagonals are the same length and bisect each other at right angles.*
- **kite** A kite is a **quadrilateral** which has two pairs of adjacent edges (= edges which are next to each other) of the same length, and no interior vertex angle (= corner) is bigger than 180 degrees. It has one line of symmetry and its diagonals cross each other at right angles.
- **arrowhead** An arrowhead is a **quadrilateral** which has two pairs of adjacent edges of the same length and ONE interior vertex angle (= corner) which is bigger than 180 degrees. It has one line of symmetry and its diagonals do not cross. It is also known as a **dart** or **deltoid**.

regular quadrilateral = square.

- **irregular quadrilateral** Strictly speaking, an irregular quadrilateral is any **quadrilateral** that is not a square, but it is usually taken to be one not having a special name.
- **golden rectangle** A golden rectangle is an **oblong** with its two edge-lengths sized in the proportions of the **golden ratio** ($\approx 1.618 \pm 1$).

Length of longer edge \approx 1.618 \times length of shorter edge.